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Abstract 
 
Iterated Total Time on Test (TTT) transforms can be used to characterize certain stochastic orderings. In 
particular, orderings with respect to expectation of functions, convex with respect to polynomials, are 
equivalent to higher order TTT domination under certain conditions. This ordering gives rise to a k-mart 
structure, which gives meaningful representation for the relationship of two jointly distributed random 
variables. Here we illustrate these ideas applied to mixtures of gamma distributions. 

 

1. Introduction 

If a survival function F  with finite moment is integrated from t to ∞ and scaled by its mean, a new 
survival function is produced, FT . The cumulative distribution function corresponding to this new 
survival function 1F FT = −T  is known as the Total Time on Test (TTT) transform. This function is used in 
reliability and survival analysis for diagnostics purposes (Barlow, Campo, 1975; Bergman, 1977; Barlow, 
1979; Barlow, 1998). Recently it has been used by a series of authors in studying stochastic orderings  
(c.f. Kochar, Li, Shaked, 2002 and the references therein). 
 
Two distributions F and G with the same mean are ordered such that the TTT of one dominates the other 
( GT T≥ F ) if and only if there exists random variables X and Y with distribution F and Y respectively, such 
that the expectation of any convex function evaluated at Y is greater than or equal to the expectation of the 
same function evaluated at X. In this case, Y is said to be a dilation of X (Ross, 1983, Section 8.5, Shaked 
and Shanthikumar, 1994, Section 2.A). 
 
More over, Y is a dilation of X if and only if there exists a kernel defining a joint distribution such that 
E(Y|X) = X, i.e. (X,Y) has a martingale structure (Blackwell, 1951 and 1953, Strassen, 1965). 
 

2. Generalized convexity, Iterated TTT, k-mart 

Since the TTT defines a new distribution, it can be applied iteratively. What happens when the iterated 
transform of a distribution dominates the other? Is there a corresponding notion for dilation? Is there a 
generalization of the martingale structure? 
 
2.1 Generalized convexity 

The classical concept of convexity can be viewed as the comparison of a real function with a straight line. 
A function f is convex if and only if for every line l that intercepts the function in exactly two points, f - l 
has two sign changes with the last sign change being -, +. An equivalent approach for differentiable 
functions is that it is convex if and only if the second derivative is nonnegative (where it exists). 
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A function can be convex with respect to a polynomial P (instead of a line) of degree m. In this case, the 
number of sign changes of f - P is m + 1, and the last sign change is -, +. It can be shown that the (m + 
1)th-derivative of f being nonnegative is equivalent to being convex with respect to a polynomial of 
degree m (Roberts and Varberg, 1973). We will refer to these functions as m-convex. 
 
2.2 Iterated TTT 

As mentioned before, the TTT transform of the distribution F defines a new distribution denoted by TF, 
provided that the first moment exists. This new distribution is referred to as the first order TTT transform. 
The transform is then applied again to the first order TTT transform to get the second order TTT 
transform, which is a distribution if the second moment of the original distribution is finite. This process 
can be extended iteratively. We will denote the m-order transform of F as m

FT , which is a valid 
distribution if the first m moments of F are finite 
 
2.3 K-mart 

What is the generalization of a martingale structure? A k-mart. The jointly distributed random variables 
( )1, , ,kX X Y… , with ( )1, , kX X…  iid, are said to have a k-mart structure if and only if 
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, [ ]⋅  denotes the greatest integer function. 

 
2.4 A relationship 

Domination of the m-order TTT transform characterizes a balayage which is a stochastic ordering of two 
distributions defined by expectations of m-convex functions (Meyer, 1966). 
 
Theorem 2.4.1. Let F and G be the distribution functions of the random variables X and Y respectively. G 
is a balayage of F, i.e. ( )( ) ( )( )E c Y E c X≥  for every m-convex function c, if and only if the first m-

moments of F and G are equal and m
G FT T≥ m  (Vera and Lynch, 2004). In symbols,  or . 
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Theorem 2.4.2. Let F and G be distribution functions. G is a balayage of F, i.e.  if and only if there 

exists jointly distributed random variables 

m
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mart structure. 
 
2.5 Diagnostics 

A way to discern a k-mart structure between two distributions F and G, is to look at the number of sign 
changes of F - G, denoted by s. The j-th iteration of the TTT transform has at most s - j sign changes, 
provided the first j moments of F and G are the same. This fact can be used to recognize a balayage by the 

use of iterated TTT transforms. In particular,  if G - F has m sign changes. 
m

G F>



3. Illustration: Mixtures of gamma distributions. 

The mixture over the scale parameter of a gamma distribution is a balayage of another mixed gamma, 
with the same shape parameter, thus imposing a k-mart structure. 
 
Let ( ; ,h )α β⋅  denote the density of a gamma distribution with shape parameter α and scale parameter β, 
and let ( ; ,H )α β⋅  be the corresponding cdf. Let B be a mixing distribution over the parameter β, and let 

C be a distribution with 
m

B C> . Let ( ) ( ); ,G H dBα β β= ⋅∫  and ( ) (; ,F H dC )α β= ⋅∫ β . Under this 

conditions,  and thus a k-mart structure can be imposed between the two mixtures. 
m
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To see this, notice that since the first m moments of B and C are equal, 
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Thus the first m-moments of F and G are the same. 
 
Further, let us assume that dB - dC has m + 1 sign changes. Then 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 /1; , xg f x h x dB dC x e dB dCα β
αα β β β β β

α β
− −− = − = −

Γ∫ ∫  

has at most m + 1 sign changes, since the gamma distribution has a kernel that is totally positive of all 
orders in x and β (see the Variation Diminishing Theorem in Karlin, 1968). The fact that the two densities 
integrate to one, implies that G - F has at most k sign changes (the integral of the difference is zero). 
Hence, there is domination of the m-order TTT transform of G over F, i.e. m

G FT T≥ m . Figure 1 compares a 
4 point mixture with a 2 point mixture of gamma distributions with shape parameter 3. 
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Figure 1: Comparison of higher order TTT transforms for mixed gamma distributions 
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